Image Generation and Analysis with Google Vertex AI
Setting Up Vertex AI
First, install the required dependencies:
pip install google-cloud-aiplatform pillow
Image Generation
Using Vertex AI's ImageGenerationModel, we can create custom images from text prompts. Here's how to generate a bouquet image:
from vertexai.preview.vision_models import ImageGenerationModel
import vertexai
def generate_bouquet_image(project_id, location, output_file, prompt):
vertexai.init(project=project_id, location=location)
model = ImageGenerationModel.from_pretrained("imagegeneration@002")
images = model.generate_images(
prompt=prompt,
number_of_images=1,
seed=1,
add_watermark=False,
)
images[0].save(location=output_file)
Image Analysis with Gemini Pro Vision
After generating the image, we can analyze it using Gemini Pro Vision model:
from vertexai.generative_models import GenerativeModel, Image
def analyze_bouquet_image(image_path):
image = Image.load_from_file(image_path)
multimodal_model = GenerativeModel("gemini-pro-vision")
prompt = "generate birthday wishes based on the image passed"
contents = [image, prompt]
responses = multimodal_model.generate_content(contents)
return responses
Usage Example
Here's how to use both functions together:
project_id = "your-project-id"
location = "us-central1"
output_file = "image.jpeg"
prompt = "Create an image containing a bouquet of 2 sunflowers and 3 roses"
# Generate image
generate_bouquet_image(project_id, location, output_file, prompt)
# Analyze generated image
result = analyze_bouquet_image(output_file)
Key Features
- Text-to-image generation using Vertex AI
- Image analysis with Gemini Pro Vision
- Support for custom prompts and multiple images
- Local image saving and processing
- Integration with Google Cloud Platform
Reference: